Programmed Cellular Immunotherapies

Corporate Overview

August 2017
Forward-Looking Statements

This presentation contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the Company's advancement of and plans related to the Company's product candidates, clinical studies, and research and development programs, the Company's progress and plans for its clinical investigation of ProTmune™ and of FATE-NK100, the timing for initiation of the Company's planned Phase 2 stage of PROTECT, the therapeutic potential of ProTmune and FATE-NK100, the scope and enforceability of the Company's intellectual property portfolio, and the Company's financial condition. These and any other forward-looking statements in this presentation are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that results observed in prior studies, including preclinical studies of ProTmune and FATE-NK100, will not be observed in ongoing or future studies involving these product candidates, the risk of a delay in the enrollment or evaluation of subjects in any ongoing clinical studies, the risk that the Company may cease or delay preclinical or clinical development for any of its existing or future product candidates for a variety of reasons (including requirements that may be imposed by regulatory authorities and requirements for regulatory approval, difficulties or delays in subject enrollment in current and planned clinical trials, difficulties in manufacturing and supplying the Company's product candidates for clinical testing, and any adverse events or other negative results that may be observed during preclinical or clinical development), and the risk that the Company's expenditures may exceed current expectations for a variety of reasons. These statements are also subject to other risks and uncertainties as further detailed in the Company's most recently filed Form 10-Q, and subsequent periodic reports filed by the Company under the Securities Exchange Act of 1934, as amended, any of which could cause actual results to differ materially from those contained in or implied by the forward-looking statements in this presentation. The Company is providing the information in this presentation as of the date hereof and does not undertake any obligation to update any forward-looking statements contained in this presentation unless required by applicable law.
Mission

To develop first-in-class cell-based immunotherapies for cancer and immune disorders by programming cell function and fate

T cells | CD34+ cells | NK cells

induced Pluripotent Cell Platform for off-the-shelf engineered immunotherapies
Better Cells for Better Therapies™
Our Approach to Cellular Immunotherapy

Programmed Donor Cell Products

- **Cells from healthy donors with selected traits**
- **Ex vivo cell modulation to program biological properties**
- **Cell products programmed for enhanced therapeutic function**

iPSC-derived Cell Products

- **Renewable pluripotent cell lines with engineered functionality**
- **Ex vivo expansion / differentiation to derive clonal cell populations**
- **Off-the-shelf engineered cell products for 1000s of patients**
First-in-Class Product Candidates

<table>
<thead>
<tr>
<th>IMMUNO-ONCOLOGY</th>
<th>IMMUNO-REGULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATE-NK100 first-in-class adaptive memory NK cell cancer immunotherapy</td>
<td></td>
</tr>
<tr>
<td>– Multi-faceted anti-tumor activity, persistence and immune checkpoint resistance</td>
<td></td>
</tr>
<tr>
<td>– Broad therapeutic potential across liquid and solid tumors, including with mAbs</td>
<td></td>
</tr>
<tr>
<td>– VOYAGE study ongoing in r/r AML; two additional studies cleared for conduct by FDA in advanced solid tumors</td>
<td></td>
</tr>
<tr>
<td>Off-the-shelf NK- and T-cell candidates using renewable engineered iPSC lines</td>
<td></td>
</tr>
<tr>
<td>– Revolutionary approach to overcome challenges of patient-sourced therapies</td>
<td></td>
</tr>
<tr>
<td>– Platform backed by dominant IP position of 90+ issued patents / 100+ patent applications</td>
<td></td>
</tr>
<tr>
<td>ProTmune™ next-generation cell graft to prevent acute Graft-versus-Host Disease</td>
<td></td>
</tr>
<tr>
<td>– Patent-protected, highly-differentiated approach addressing significant unmet need</td>
<td></td>
</tr>
<tr>
<td>– Supported by Fast Track and US and EU Orphan Drug Designations</td>
<td></td>
</tr>
<tr>
<td>– PROTECT safety stage ongoing with DMC review scheduled; plan to initiate efficacy stage during 3Q17</td>
<td></td>
</tr>
<tr>
<td>ToleraCyte™ first-in-class immunoregulatory CD34+ cell for immune tolerance induction</td>
<td></td>
</tr>
<tr>
<td>– Novel mechanism of action promotes selective and durable deletion of autoreactive T cells</td>
<td></td>
</tr>
<tr>
<td>– Ongoing preclinical studies evaluating safety and efficacy of iPSC-derived irCD34+ cells</td>
<td></td>
</tr>
</tbody>
</table>
Immuno-Oncology Programs
Natural Killer (NK) Cells
Unique Properties & Emerging Role in Cancer Immunotherapy

• **Multi-faceted effector function against tumor cells**
 – Direct killing of tumor cells through release of cytotoxic granules
 – Trigger adaptive immune response (e.g., T cells) through cytokine production
 – Engage and lyse antibody-coated tumor cells through Fc receptor (ADCC)

• **Effector function is not patient specific**
 – NK cell activity is *independent* of antigen recognition (unlike T cells)
 – Unique ability to target stressed / transformed cells, leaving healthy cells unharmed
 – Donor cells can be safely administered without eliciting GvHD

• **Emerging clinical precedent across liquid and solid tumors**
 – Varying degrees of tumor killing across a wide variety of tumor types
 – Well-tolerated with low risk of serious adverse events (e.g., CRS, neurotoxicity)
Adaptive Memory NK Cells

Unique subset of activated NK cells expressing the maturation marker CD57 and the memory-like activating receptor NKG2C

Formation of Adaptive Memory NK Cells
Correlated with reduced relapse risk and superior disease-free survival in HCT

Heightened Effector Function Enhance Persistence
Resistant to Immune Checkpoint Pathways
Adaptive Memory NK Cells

Resistance to Immune Checkpoint Pathways

Retained Proliferation Potential of Adaptive Memory NK Cells

![Graph showing NK cell proliferation](image)

- Conventional NK Cells
- Adaptive Memory NK Cells
FATE-NK100
Realizing the Potential of Adaptive Memory NK Cells

CMV+ Donor

Day 0

Day 0 – Post-Depletion

Day 7 – Programming

Apheresis
T & B Cell Depletion

7-Day Ex Vivo Modulation
FT1238 + Cytokine Feeder-free

Conventional NK Cell Therapies
Overnight (O/N) Cytokine-induced NK Cells

FATE-NK100
Adaptive Memory NK Cells

Cancer Research
GSK 3 inhibition drives maturation of NK cells and enhances their antitumor activity
Cichocki et. al. 10.1158/0008-5472.CAN-17-0799
FATE-NK100

Potent Direct Cellular Cytotoxicity

KG1 AML Cell Line

- % Tumor Killing
- Log(E:T) Ratio

Patient-Derived Primary AML Blasts

- % Tumor Killing
- Log(E:T) Ratio

FATE-NK100

<table>
<thead>
<tr>
<th>E:T</th>
<th>Effector (NK) to Target (Tumor)</th>
</tr>
</thead>
</table>

- O/N Cytokine-induced

E:T = Effector (NK) to Target (Tumor)
FATE-NK100
Elevated Cytokine Production for Inducing T-Cell Response

IFNγ

<table>
<thead>
<tr>
<th>Activating Signal</th>
<th>None</th>
<th>IL-12+IL-18</th>
<th>K562</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokine Release</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>

TNFα

<table>
<thead>
<tr>
<th>Activating Signal</th>
<th>None</th>
<th>IL-12+IL-18</th>
<th>K562</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokine Release</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

*Indicates statistical significance.
FATE-NK100
Augmented ADCC Effector Function

Exploiting CD16 IgG antibody-binding receptor in combination with FDA-approved mAbs for solid tumors

SKOV3 (Ovarian Cancer) Line

Luc-SKOV3 Tumor Image Analysis
Day 21

FATE-NK100 + Herceptin

FATE-NK100 w/o Herceptin

FATE-NK100 w/ Herceptin

Time (hrs)

Tumor Killing

O/N Cytokine-induced

FATE-NK100

Herceptin

Herceptin
FATE-NK100

Tumor Cell-Specific Cytotoxicity

Multiplex Killing Assay

% Specific Killing

Log(E:T) Ratio

K562 Lines

Allogeneic PB Mononuclear Cells

FATE-NK100 O/N Cytokine-induced
FATE-NK100
Launch of Multi-pronged Clinical Development Strategy

VOYAGE
Refractory / Relapsed AML
- Clinical precedent for donor NK cell therapy with 25-30% CRs
- IV infusion; 3 dose levels; 10-patient expansion
- Key read-outs: NK cell persistence; rates of CR and MRD
- 1st patient treated at UMN; initial data expected in 2H17

APOLLO
Recurrent Ovarian
- Significant majority of tumor cells express stress ligands
- IP administration; 3 dose levels; 10-patient expansion; outpatient
- Key read-outs: NK cell persistence; tumor shrinkage by RECIST
- IND cleared; initial data expected in 2H17

DIMENSION
mAb Combination in Solid Tumors
- First clinical investigation of donor NK cells + mAb therapy
- IV infusion; 3 dose levels; 10-patient expansion; outpatient
- 3 parallel arms: mono; trastuzumab combo; cetuximab combo
- IND cleared; initial data expected in 2H17
Ushering in an Off-the-Shelf Cell Product Paradigm

<table>
<thead>
<tr>
<th>Key Features</th>
<th>Today</th>
<th>Tomorrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Source</td>
<td>Patient / Donor Cells</td>
<td>Master Cell Line</td>
</tr>
<tr>
<td>Genetic Engineering</td>
<td>Random & Variable</td>
<td>Precise & Complete</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Patient-specific</td>
<td>Off-the-Shelf</td>
</tr>
<tr>
<td>Product Consistency</td>
<td>Heterogeneous</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Therapeutic Functionality</td>
<td>Single MOA</td>
<td>Multiple MOA</td>
</tr>
<tr>
<td>Delivery</td>
<td>Delayed & Uncertain</td>
<td>On Demand</td>
</tr>
<tr>
<td>Dose-per-Patient</td>
<td>Single</td>
<td>Multiple</td>
</tr>
<tr>
<td>Overall Paradigm</td>
<td>Patient-centric</td>
<td>Product-centric</td>
</tr>
</tbody>
</table>
Human Induced Pluripotent Stem Cells

Renewable Source for Off-the-Shelf Cell Products

Using Engineered Pluripotent Cell Lines to Create NK Cells and T Cells

A Single Human Induced Pluripotent Cell

- Unlimited Self-Renewal
- Robust Expansion Capacity
- Precise, Single-Cell Engineering
- Multi-faceted Functionality (e.g., Tumor Targeting, Cell Persistence, Checkpoint Resistance)

- On-Demand Immune Cell Derivation
- Master Cell Banking
- Cell Line Validation

Renewable | Engineered | Clonal Cell Lines
Off-the-Shelf Cell Products Derived From Renewable Engineered Pluripotent Cell Lines

- Does not require patient-sourced cells
- Off-the-shelf production of cells
- Consistent and reliable product forms
- Unprecedented scalability

Addresses Critical Limitations of Patient-Sourced Cell Therapies
Off-the-Shelf iNK Cell Cancer Immunotherapy

Potent Direct Cellular Cytotoxicity

SKOV3 (Ovarian Cancer) Killing Assay

- Overnight Primed NK Cells
- FATE-NK100
- Off-the-Shelf iNK Cells (donor 1)
- Off-the-Shelf iNK Cells (donor 2)
Engineered hnCD16 iNK Cell Product Candidate

Off-the-Shelf Cornerstone Approach for Solid Tumors

Engineered high-Affinity non-Cleavable CD16 Fc Receptor

Modified form of CD16a IgG antibody-binding receptor resists shedding upon activation

High affinity

Cleavage resistant

Renewable Engineered Pluripotent Cell Line

Engineered hnCD16 iNK Cells for ADCC

FDA-approved Monoclonal Antibodies

- Rituxan
- Herceptin
- ERBITUX
- DARZALEX

hnCD16

Bi- / Tri- Specific Engagers
Engineered hnCD16 iNK Cell Product Candidate
From a Single iPSC to a Clonal Effector Cell Population

Renewable Engineered Pluripotent Cell Line

1 iPSC
Clonal Expansion
1M iPSCs

Engineered hnCD16 iNK Cells for ADCC

1x10^6 hnCD16 iNKs

1x10^{12} hnCD16 iNKs
Engineered hnCD16 iNK Cell Product Candidate

CD16 is Expressed and Continuously Maintained

Control (homeostasis in culture)

Treated with TACE / ADAM inhibitor (inhibits CD16 cleavage)

Activated with K562 (induces CD16 shedding)
Engineered hnCD16 iNK Cell Product Candidate

In Vitro ADCC for Solid Tumors

SKOV3 (Ovarian)
(HER2\(^{hi}/\)EGFR\(^{hi}\))

A549 (Lung)
(HER2\(^{lo}/\)EGFR\(^{hi}\))

Target cells only
- pbNK (n=3)
- Cord blood NK (n=1)
- hnCD16 iNK (n=3)

- No antibody
- Anti-Her2
- Anti-EGFR
“Engineering therapeutic attributes into pluripotent cell lines is a breakthrough approach to renewably generate potent T-cell immunotherapies. This unique approach offers the prospect for off-the-shelf delivery of T-cell therapies with enhanced safety and therapeutic potential at the scale necessary to serve significant numbers of patients.”

Fate Therapeutics and Memorial Sloan Kettering Cancer Center Launch Partnership for Development of Off-the-Shelf T-Cell Immunotherapies

Unite Cellular Immunotherapy Expertise to Accelerate Clinical Translation of Off-the-Shelf Products Offering Broad Patient Access

Collaboration to Use Engineered Pluripotent Cell Lines to Renewably Generate T-Cell Product Candidates

Foundational Intellectual Property Covering Pluripotent Cell-derived Engineered T Cells Exclusively Licensed to Fate Therapeutics
Renewable Engineered Pluripotent Cell Platform

Our Foundational Intellectual Property

Over 90 Issued Patents and 100 Pending Applications

- Exclusive licenses from pioneers in the induced pluripotent cell field
 - Drs. Rudolf Jaenisch (Whitehead Institute) and Sheng Ding (TSRI)

- OCT4-based generation of pluripotent cells
 - Broadly cover cell compositions expressing OCT4
 - Critical to inducing cells to pluripotent state

- Small molecule-based pluripotent cell programming
 - Broadly cover compositions / uses in pluripotent cell induction, maintenance and expansion
 - Critical for generation of clonal populations of cells
Immuno-Regulatory Programs
ProTmune™
Transforming the Curative Potential of Allogeneic HCT

A Next-Generation Hematopoietic Cell Graft to Prevent
Acute Graft-versus-Host Disease

ProTmune™
Small molecule programmed mobilized peripheral blood graft

FT1050 + FT4145

- **Allogeneic HCT performed with curative intent**
 - Orphan hematologic malignancies (e.g., AML, ALL, MDS)
 - Rare genetic disorders (e.g., β-thalassemia, sickle cell)

- **Attractive market opportunity**
 - ~30,000 allogeneic HCT procedures performed annually
 - Conducted at concentrated number of centers of excellence

- **Significant unmet medical need**
 - 40%+ mortality rate at 1 year
 - Acute GvHD is leading cause of early morbidity and mortality
 - 40-80% of patients experience Grades 2-4 acute GvHD
 - No FDA approved therapies for prevention
Pathophysiology of Acute GvHD

Donor Allo-reactive T-cell Activation
- Host APCs
 - IL-12
 - IL-12
 - Th1
 - Tc1
- Tc17
- Tc1
- Th17

Assault on Patient Tissue
- Acute GvHD (gut, liver, skin)
 - ~40-80% D100 cumulative incidence
 - ~10-20% early mortality

Tissue Damage

Cytokine Storm
- IL-6
- IL-1β
- TNF-α
- IFN-γ

Immunosuppressive Agents
- Severe Infections
 - ~70% D100 cumulative incidence
- Relapse
 - ~35% 1YR cumulative incidence
Incidence of Grades 2-4 Acute GvHD
Matched Unrelated Donor Allogeneic HCT

Grades 2-4 Acute GvHD

Cumulative Incidence of Acute GVHD (%)

Days since Transplantation

---- Peripheral Blood (n=273) --- Bone Marrow (n=278)

NCT00075816: Randomized Phase 3; 551 patients; 48 centers
Incidence of Grades 2-4 Acute GvHD

Grade Matters!

Probability of Survival

Multivariate Analysis of the Association between aGVHD with 100-day and 1-year Mortality

<table>
<thead>
<tr>
<th>GVHD grade</th>
<th>No.</th>
<th>Odds ratio</th>
<th>P</th>
<th>Odds ratio</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No GVHD</td>
<td>157</td>
<td>1.00</td>
<td>1.00</td>
<td>0.8</td>
<td>.166</td>
</tr>
<tr>
<td>Maximum grade of I or II</td>
<td>285</td>
<td>0.29</td>
<td><.001</td>
<td>0.8</td>
<td>.166</td>
</tr>
<tr>
<td>Maximum grade of III</td>
<td>109</td>
<td>1.04</td>
<td>.900</td>
<td>2.2</td>
<td>.002</td>
</tr>
<tr>
<td>Maximum grade of IV</td>
<td>41</td>
<td>4.30</td>
<td><.001</td>
<td>13.1</td>
<td><.001</td>
</tr>
</tbody>
</table>

Cahn et al. Blood 2005;106:1495-1500
Prospective Study; 607 Patients; 17 centers
Cancer Relapse & Overall Survival
Matched Unrelated Donor Allogeneic HCT

--- Peripheral Blood (n=273) --- Bone Marrow (n=278)

Peripheral Blood

Bone Marrow

NCT00075816: Randomized Phase 3; 551 patients; 48 centers
ProTmune™
Attenuation of Graft-versus-Host Disease

In Vivo Efficacy of ProTmune

Murine Allogeneic Acute GvHD Model
(8 studies)
ProTmune™
Maintenance of Graft-versus-Leukemia

In Vivo Efficacy of ProTmune

Leukemic Cell Clearance

ProTmune (T-cell depleted)
Vehicle (T-cell depleted)
ProTmune
Vehicle

Murine Allogeneic
GvL Model
(6 studies)
ProTmune™
PROTECT Phase 1/2 Study for Prevention of Acute GvHD

Design
• 6-10 subjects receiving ProTmune in open-label study
• Matched unrelated donor (MUD) mPB HCT with myeloablative conditioning
• Hematologic malignancies include ALL, AML & MDS
• Standard of care GvHD prophylactic (Methotrexate / Tacrolimus)

Safety Criteria
• Day 28 Engraftment without Graft Failure
• Day 28 Survival

Status
• Open at 12 U.S. Centers
• Six patients have received ProTmune

Convened Data Monitoring Committee to Review Phase 1 Data and to Seek Recommendation for Phase 2 Initiation
ProTmune™
PROTECT Phase 1/2 Study for Prevention of Acute GvHD

- Event-free Survival
- Cancer Relapse
- Severe Infections
- Chronic GvHD

Prepared for Phase 2 Initiation in September 2017 Following Data Monitoring Committee’s Phase 1 Review
ProTmune™
Next-Generation Graft to Prevent Acute GvHD

- Preventive approach to address leading cause of early morbidity and mortality
 - 40 to 80% of patients undergoing allogeneic HCT experience acute GvHD
 - Death directly attributable to acute GvHD or its treatment occurs in 10 to 20% of patients
 - No approved preventive therapies in the U.S.

- Highly-differentiated therapeutic paradigm
 - Optimize biological properties of donor hematopoietic cells ex vivo using small molecules
 - On-site manufacture integrates into current clinical practice
 - Avoids costly and time-consuming measures (e.g., genetic engineering, cell expansion, cell separation)

- Strong commercial positioning targeting significant market opportunity
 - Matched unrelated donor (MUD) for hematologic malignancies is predominant HCT setting
 - Composition of matter patents extending through 2032
 - Secured Fast Track in US and broad Orphan Drug Designations in US and EU

- PROTECT study has potential to support accelerated registration and validate broader opportunity
 - Phase 2 stage is randomized, controlled and blinded (investigator and subject)
 - Potential to expand into additional HCT settings (Haplo, MRD) and other disease (rare genetic disorders)
Financial Summary

Three Months Ended June 30, 2017

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>$1.0M</td>
</tr>
<tr>
<td>R&D Expense</td>
<td>$7.9M</td>
</tr>
<tr>
<td>G&A Expense</td>
<td>$2.7M</td>
</tr>
<tr>
<td>Operating Expense, Adjusted¹</td>
<td>$9.1M</td>
</tr>
<tr>
<td>Cash & Cash Equivalents²</td>
<td>$78.5M</td>
</tr>
<tr>
<td>Employees</td>
<td>71</td>
</tr>
<tr>
<td>Total Shares Outstanding³</td>
<td>55.5M</td>
</tr>
</tbody>
</table>

¹ Excludes $1.0M in stock-based compensation expense and $0.5M in Juno-related research expense.
² Includes $7.5M in cash proceeds from July 2017 amendment of Silicon Valley Bank Loan Agreement.
³ Includes 14.1M shares of common stock from conversion of non-voting preferred stock.
Clinical Momentum
Potential Upcoming Milestones

FATE-NK100
- Enrollment in 3 open-label studies x 5 treatment arms
- Initial clinical data at 2H17 scientific conferences
- Initiation of expansion cohorts

iPSC Product Pipeline
- Preclinical data on first-of-kind iNK and iT cell pipeline
- FT500i IND filing for checkpoint inhibitor combo
- FT516i IND filing for mAb combo

ProTmune™
- Completion of IDMC P1 Day 28 safety review
- Initiation of P2 efficacy stage of PROTECT
- P1 Day 100 efficacy data at ASH
First-in-Class Cellular Immunotherapy Pipeline

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>PRECLINICAL</th>
<th>CLINICAL</th>
<th>RIGHTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMMUNO-ONCOLOGY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FATE-NK100 – AML</td>
<td></td>
<td></td>
<td>Worldwide</td>
</tr>
<tr>
<td>FATE-NK100 – Solid Tumor mAb Combo</td>
<td></td>
<td></td>
<td>Worldwide</td>
</tr>
<tr>
<td>FATE-NK100 – Ovarian</td>
<td></td>
<td></td>
<td>Worldwide</td>
</tr>
<tr>
<td>FT500i (iNK Cell)</td>
<td>OTS</td>
<td></td>
<td>Worldwide</td>
</tr>
<tr>
<td>FT516i (Engineered hnCD16 iNK Cell)</td>
<td>OTS</td>
<td></td>
<td>Worldwide</td>
</tr>
<tr>
<td>Engineered CAR iT Cell</td>
<td>OTS</td>
<td></td>
<td>Worldwide</td>
</tr>
<tr>
<td>Ex Vivo T-Cell Modulation Collaboration</td>
<td></td>
<td></td>
<td>Milestones / Royalties</td>
</tr>
<tr>
<td>IMMUNO-REGULATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ProTmune™ – Graft-versus-Host Disease</td>
<td></td>
<td></td>
<td>Worldwide</td>
</tr>
<tr>
<td>ToleraCyte™ – Autoimmune Disorders</td>
<td></td>
<td></td>
<td>Worldwide</td>
</tr>
<tr>
<td>iReg Cell</td>
<td>OTS</td>
<td></td>
<td>Worldwide</td>
</tr>
</tbody>
</table>

Off-the-Shelf using Renewable Engineered Pluripotent Cell Lines