

Better Cells For Better Therapies™

Programmed Cellular Immunotherapies

Overview of Universal, Off-the-Shelf Cancer Immunotherapy Programs

June 6, 2019

www.fatetherapeutics.com

This presentation contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the Company's research and development activities and its progress, plans and timelines for its manufacture, preclinical development and clinical investigation of its product candidates, the timing for the Company's receipt of data from its clinical trials and preclinical studies, the Company's clinical development and regulatory strategy, and the therapeutic and market potential of the Company's product candidates. These and any other forward-looking statements in this presentation are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that results observed in prior studies of its product candidates will not be observed in ongoing or future studies involving these product candidates, the risk of a delay in the initiation of, or in the enrollment or evaluation of subjects in, any clinical studies, and the risk that the Company may cease or delay manufacture, or preclinical or clinical development, of any of its product candidates for a variety of reasons (including regulatory requirements, difficulties in manufacturing or supplying the Company's product candidates, and any adverse events or other negative results that may be observed during preclinical or clinical development). These statements are also subject to other risks and uncertainties as further detailed in the Company's most recently filed periodic report, and subsequent periodic reports filed by the Company, under the Securities Exchange Act of 1934, as amended, any of which could cause actual results to differ materially from those contained in or implied by the forward-looking statements in this presentation. The Company is providing the information in this presentation as of the date hereof and does not undertake any obligation to update any forward-looking statements contained in this presentation unless required by applicable law.

First Innings of Cell Therapy Development

Patient-derived CAR-T Cell Immunotherapy

"When factoring in all the costs associated with CAR T-cell therapy, hospitals may charge as much as \$1.5 million or more to avoid losing money." Richard T. Maziarz, MD Professor of Medicine, Oregon Health & Science University's Knight Cancer Institute

Impaired Starting Material | Random & Variable Engineering | Complex Logistics Heterogeneous Drug Product | Expensive | Single-dose Limitation

First Innings of Cell Therapy Development

Batch-to-Batch Engineering is Expensive and Results in Significant Product Heterogeneity

How do we build on early successes and transition from a heterogenous process to the cost-effective delivery of optimized cell products?

Changing the Game in Cell-based Cancer Immunotherapy

The Potential to Select, Characterize and Renewably Use a Single Cell

What if we had the opportunity to renewably use a <u>single</u> cell?

Changing the Game in Cell-based Cancer Immunotherapy

Universal, Off-the-Shelf Cell Products Derived from Renewable Master Cell Lines

Key Features	Cell Therapy 1.0 and 2.0	Cell Therapy 3.0	
Cell Source	Patient and Donor Cells	Renewable Master Cell Line	
Genetic Engineering	Random & Variable	Uniform & Complete	
Characterization	Imprecise	Well-defined	
Product Identity	Heterogeneous	Homogeneous	
Manufacturing	Limited Dose Availability	Off-the-Shelf Availability	
Cost-per-Dose	High	Low	
Dosing	Single Dose	Multiple Doses / Multiple Cycles	
Overall Paradigm	Process-centric	Product-centric	

Human Induced Pluripotent Stem Cells (iPSCs)

Reprogramming Adult Somatic Cells to a Pluripotent State

Generation of Human iPSCs

Fate Scientific Founders

Mouse iPS cells reported in 2006 Human iPS cells reported in 2007

Тне

SCRIPPS RESEARCH

INSTITUTE[®]

Sheng Ding, PhD Rudolf Jaenisch, MD WHITEHEAD INSTITUTE

Unique Advantages of Human iPSCs

Isolation, Characterization & Selection of a Single iPSC Clone

Fate Therapeutics' iPSC product platform is supported by an IP portfolio of 100+ issued patents and 100+ pending patent applications

Off-the-Shelf Cell-based Cancer Immunotherapy

iPSC Product Platform for Mass Production of Universal NK Cell and T-Cell Products

Clonal master iPSC lines are a renewable cell source that can be repeatedly used to massproduce homogeneous, cryopreserved cell product in a cost-effective manner

Off-the-Shelf Cell-based Cancer Immunotherapy

Systematic Build of Industry-Leading iPSC-derived NK Cell Product Pipeline

Universal, Off-the-Shelf NK Cell Cancer Immunotherapy Pipeline

Clonal Master iPSC Line	Synthetic Biology	FT500	FT516	FT596	FT538	FT576
Multi-faceted Innate Immunity		1	1	1	1	1
+ High-Affinity, Non-cleavable 158V CD16	Augment mAb therapy		1	1	1	1
+ IL-15 Receptor Fusion	Enhance NK cell function			1	1	1
+ CAR Insertion	Target tumor-associated antigen			CD19		BCMA
+ CD38 Knock-out	Resist CD38-mediated fratricide				1	1
	Total # of Synthetic Elements	0	1	3	3	4

Multi-faceted Innate Immune Function

Target cell recognition via stress ligands and non-self MHC-I expression

Bridging Innate and Adaptive Immunity

100s of Cryopreserved Doses in Single GMP Campaign from Master iPSC Line

Low-cost per Dose GMP Production of Homogeneous Cell Product

GMP Manufacturing Site

Molecular and Cellular Therapeutics University of Minnesota

FT500 Cell Product					
Identity, CD45+	100%				
Identity, CD45+CD56+	98%	7			
Viability	80%				
Residual iPSCs	Not detected				
Packaging	Cryopreserved	T. ET TOLO (IN B 18 (1930), Over Bog Constraints 14 (1940) Calculations in 20 Provide Recommendations (1940) Recommendations (1940) Recommendatio			
Storage	Clinical sites	entry of the second sec			
Administration	Thaw-and-infuse 'on demand'				
Delivery	Outpatient setting				

Phase 1 Study Design: Multiple Doses over Multiple Cycles for Advanced Solid Tumors

First-ever Clinical Trial in U.S. of iPSC-derived Cell Therapy

Regimen B: Checkpoint inhibitor therapy until PD (up to D169)

Regimen A – Monotherapy*

- Salvage therapy for advanced solid tumors
- Dose Escalation: 100M and 300M cells per dose
- Dose Expansion: up to 10 subjects

<u>Regimen B</u> – Checkpoint Inhibitor (CPI) Combination*

- Progressed or failed CPI for advanced solid tumors
- Dose Escalation: 100M and 300M cells per dose + CPI
- Dose Expansion: up to 30 subjects

*If a CR, PR or SD \geq 24 weeks is observed, up to 10 subjects with that specific tumor type may be added to Dose Expansion

Phase 1 Study Design: Multiple Doses over Multiple Cycles for Advanced Solid Tumors

First-ever Clinical Trial in U.S. of iPSC-derived Cell Therapy

Regimen B: Checkpoint inhibitor therapy until PD (up to D169)

<u>Regimen A</u> – Monotherapy

- DL1 = 100M cells per dose (n=3)
 - ➢ All 3 subjects received 6 doses
 - No reported DLTs
- DL2 = 300M cells per dose

Subjects treated

<u>Regimen B</u> – Checkpoint Inhibitor (CPI) Combination

- DL1 = 100M cells per dose
 - Subjects treated

FT500 Patient Enrichment Strategy in CPI Resistant Patients

Regimen B: Rescue Therapy for Patients with Loss-of-Function Mutations

DOI: 10.1038/s41467-017-01062-w

Resistance to checkpoint blockade therapy through inactivation of antigen presentation

- MHC Class I expression on tumor cells is required for detection and destruction by T cells
- Loss or down-regulation of MHC Class I is a major tumor escape mechanism in solid tumors
- MHC Class I null tumor cells are highly susceptible to killing by NK cells
- Several tumor cell mutations, including in B2M gene, disrupt MHC Class 1 expression
- ✓ B2M mutations are enriched in patients who are resistant to checkpoint blockage (~30%) and are associated with poor survival

Phase 1 Study: Key Objectives

Proprietary Learnings Accruing to our iPSC-derived Product Pipeline

Safety

- First-ever iPSC-derived cell therapy to undergo clinical investigation in U.S.
- Regimen B includes novel combination of iPSC-derived NK cell with checkpoint inhibitor therapy
- Tolerability
 - Off-the-shelf, cryopreserved, thaw-and-infuse (unmatched) cell product
 - Multiple doses over multiple cycles (3 doses per cycle; 2 cycles) administered in outpatient setting
- Biomarkers
 - Dose durability, including variance over dosing schedule
 - Anti-cell immunogenicity
 - FT500 infiltration of tumor / tumor remodeling
 - Endogenous T-cell and cytokine response
- Patient Conditioning

- Lympho-conditioning regimen
- Cytokine support

FT516 NK Cell Expression of Naturally-Occurring CD16

Fc Receptor Mediates Antibody-Dependent Cellular Cytotoxicity (ADCC)

- CD16 mediates antibody-dependent cellular cytotoxicity (ADCC), a potent anti-tumor mechanism by which NK cells recognize, bind and kill antibody-coated cancer cells
- CD16 occurs in two variants: high (158V) or low (158F) affinity for the Fc domain of IgG1 antibodies
 - Only ~15% of patients are homozygous for 158V
 - Numerous clinical studies with FDA-approved tumor-targeting antibodies, including rituximab, trastuzumab and cetuximab, have demonstrated that patients homozygous for 158V have improved clinical outcomes
- CD16 has been shown to undergo considerable down-regulation in cancer patients and shedding in the tumor microenvironment, which can significantly limit endogenous NK cell activity and inhibit antitumor activity

Musolino et al, J. Clin Oncol, 26, 1789, 2008

How to bring the 158V CD16 NK cell experience to <u>all</u> patients?

High-Affinity 158V Engagement with Monoclonal Antibody for Enhanced ADCC

Median survival time for FT516 + anti-CD20 was not reached at Day 100

Phase 1 Study Design: Multiple Doses over Multiple Cycles for AML & Lymphoma

First-ever Clinical Trial in World of Engineered iPSC-derived Cell Therapy

Regimen B: Rituximab 375 mg/m² IV on Days -4, 4, 11, and 18 of each Treatment Cycle

Regimen A – Monotherapy

- Relapsed / refractory AML
- Dose Escalation: 90M, 300M, 900M cells per dose
- Dose Expansion: up to 15 subjects

Regimen B – Rituximab Combination Rituxan

Rituximab

- Relapsed / refractory B-cell lymphoma
- Dose Escalation: 30M, 90M, 300M, 900M cells per dose + mAb
- Dose Expansion: up to 15 subjects

Fcte

IND Allowed, FT516 Manufacture Complete, Preparing for First Patient

Targeting <u>Multiple</u> Tumor-associated Antigens

Leveraging hnCD16 + CAR to Address Tumor Heterogeneity and Antigen Escape

FT596 Universal, Off-the-Shelf Multi-Targeted CAR19 NK Cell Product

Potential Best-in-Class Product for B-cell Malignancies

FT576 Universal, Off-the-Shelf Multi-Targeted CAR-BCMA NK Cell Product

Potential Best-in-Class Product for Multiple Myeloma

Universal, Off-the-Shelf CAR T-Cell Product Candidates

Memorial Sloan Kettering Collaboration

Dr. Michel Sadelain, MD, PhD Director, Center for Cell Engineering Memorial Sloan Kettering Cancer Center

ETTERS

nature biotechnology

Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy

Cell Stem Cell Perspective

New Cell Sources for T Cell Engineering and Adoptive Immunotherapy

"Engineering therapeutic attributes into pluripotent cell lines is a breakthrough approach to renewably generate potent T-cell immunotherapies. This unique approach offers the prospect for off-the-shelf delivery of T-cell therapies with enhanced safety and therapeutic potential at the scale necessary to serve significant numbers of patients."

FT819 TRAC-encoded CAR 1XX Expression

Engineering Primary T Cells vs. Single iPSC Clone for TCR Elimination

FT819 Universal, Off-the-Shelf CAR19 T-Cell Product

Novel CAR19 Targeted to the TRAC Locus for Improved Safety and Efficacy

- ✓ Novel CAR (MSKCC, 1XX) targeted to the TRAC locus for optimal activity
- ✓ Single cell derived, bi-allelic KO, iPSC clone for complete elimination of TCR mediated GvHD

Directly-infused In Vivo Anti-Tumor Activity

ONO Pharmaceutical Collaboration

Mass Production of iPSC-derived Cellular Immunotherapies

Design of In-house Manufacturing Facility

Page - 27 -

iPSC Product Platform

Clonal Master iPSC Lines for Off-the-Shelf Cell Products

"to reach more patients in need"

Next-Generation Cell-based Cancer Immunotherapy

Therapeutic Vision for Long-Term Durable Responses

Financial Summary

As of March 31, 2019

Three Months Ended March 31, 2019					
Revenue	\$2.6M				
Operating Expense, Adjusted ¹	\$19.2M				
Cash & Cash Equivalents	\$183.5M				
Employees	125				
Total Shares Outstanding ²	79.3M				

[1] Excludes non-cash stock-based compensation expense of approximately \$3.9M.

[2] Includes 14.1M shares of common stock from conversion of non-voting preferred stock.

Feite Therapeutics

Better Cells For Better Therapies™