Programmed Cellular Immunotherapies

Overview of Universal, Off-the-Shelf Cancer Immunotherapy Programs

September 2019

www.fatetherapeutics.com
Forward-Looking Statements

This presentation contains “forward-looking statements” within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the Company’s research and development activities and its progress, plans and timelines for its manufacture, preclinical development and clinical investigation of its product candidates, the timing for the Company’s receipt of data from its clinical trials and preclinical studies, the Company’s clinical development and regulatory strategy, and the therapeutic and market potential of the Company’s product candidates. These and any other forward-looking statements in this presentation are based on management’s current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that results observed in prior studies of its product candidates will not be observed in ongoing or future studies involving these product candidates, the risk of a delay in the initiation of, or in the enrollment or evaluation of subjects in, any clinical studies, and the risk that the Company may cease or delay manufacture, or preclinical or clinical development, of any of its product candidates for a variety of reasons (including regulatory requirements, difficulties in manufacturing or supplying the Company’s product candidates, and any adverse events or other negative results that may be observed during preclinical or clinical development). These statements are also subject to other risks and uncertainties as further detailed in the Company’s most recently filed periodic report, and subsequent periodic reports filed by the Company, under the Securities Exchange Act of 1934, as amended, any of which could cause actual results to differ materially from those contained in or implied by the forward-looking statements in this presentation. The Company is providing the information in this presentation as of the date hereof and does not undertake any obligation to update any forward-looking statements contained in this presentation unless required by applicable law.
First Innings of Cell Therapy Development

Patient-derived CAR-T Cell Immunotherapy

- **Apheresis**
- **T-Cell Activation**
- **2-3 week manufacturing**
- **$425,000 drug cost**
- **CAR-T Cell Infusion**
- **T-Cell Expansion**

"When factoring in all the costs associated with CAR T-cell therapy, hospitals may charge as much as $1.5 million or more to avoid losing money."

Richard T. Maziarz, MD
Professor of Medicine, Oregon Health & Science University's Knight Cancer Institute

Impaired Starting Material | **Random & Variable** Engineering | **Complex** Logistics

Heterogeneous Drug Product | **Expensive** | **Single-dose** Limitation
First Innings of Cell Therapy Development

Batch-to-Batch Engineering is Expensive and Results in Significant Product Heterogeneity

How do we build on early successes and transition from a heterogenous process to the cost-effective delivery of optimized cell products?
What if we had the opportunity to renewably use a single cell?
Changing the Game in Cell-based Cancer Immunotherapy

Universal, Off-the-Shelf Cell Products Derived from Renewable Master Cell Lines

<table>
<thead>
<tr>
<th>Key Features</th>
<th>Cell Therapy 1.0 and 2.0</th>
<th>Cell Therapy 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Source</td>
<td>Patient and Donor Cells</td>
<td>Renewable Master Cell Line</td>
</tr>
<tr>
<td>Genetic Engineering</td>
<td>Random & Variable</td>
<td>Uniform & Complete</td>
</tr>
<tr>
<td>Characterization</td>
<td>Imprecise</td>
<td>Well-defined</td>
</tr>
<tr>
<td>Product Identity</td>
<td>Heterogeneous</td>
<td>Homogeneous</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>Limited Dose Availability</td>
<td>Off-the-Shelf Availability</td>
</tr>
<tr>
<td>Cost-per-Dose</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Dosing</td>
<td>Single Dose</td>
<td>Multiple Doses / Multiple Cycles</td>
</tr>
<tr>
<td>Overall Paradigm</td>
<td>Process-centric</td>
<td>Product-centric</td>
</tr>
</tbody>
</table>
Human Induced Pluripotent Stem Cells (iPSCs)
Reprogramming Adult Somatic Cells to a Pluripotent State

Generation of Human iPSCs

Fibroblasts → retroviruses → Oct3/4, Sox2, Klf4, c-Myc → iPSC Cells

Mouse iPSC cells reported in 2006
Human iPSC cells reported in 2007

Fate Scientific Founders

Rudolf Jaenisch, MD
Sheng Ding, PhD
Unique Advantages of Human iPSCs

Isolation, Characterization & Selection of a Single iPSC Clone

A Single Human Induced Pluripotent Stem Cell (iPSC)
A renewable source for making cells

- Unlimited Self-Renewal
- Potential to Differentiate into 200+ Cell Types
- Multiplexed Engineering
- Master Cell Lines and Banks
- Uniform in Composition
- Extensive Characterization

Fate Therapeutics’ iPSC product platform is supported by an IP portfolio of 250+ issued patents and 150+ pending patent applications
Off-the-Shelf Cell-based Cancer Immunotherapy

iPSC Product Platform for Mass Production of Universal NK Cell and T-Cell Products

Clonal master iPSC lines are a renewable cell source that can be repeatedly used to mass produce homogeneous, cryopreserved cell product in a cost-effective manner.
Off-the-Shelf Cell-based Cancer Immunotherapy

Systematic Build of Industry-Leading iPSC-derived NK Cell Product Pipeline

<table>
<thead>
<tr>
<th>Clonal Master iPSC Line</th>
<th>Synthetic Biology</th>
<th>FT500</th>
<th>FT516</th>
<th>FT596</th>
<th>FT538</th>
<th>FT576</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-faceted Innate Immunity</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>+ High-Affinity, Non-cleavable 158V CD16</td>
<td>Augment mAb therapy</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>+ IL-15 Receptor Fusion</td>
<td>Enhance NK cell function</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ CAR Insertion</td>
<td>Target tumor-associated antigen</td>
<td></td>
<td></td>
<td></td>
<td>CD19</td>
<td>BCMA</td>
</tr>
<tr>
<td>+ CD38 Knock-out</td>
<td>Resist CD38-mediated fratricide</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Total # of Synthetic Elements</td>
<td></td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
FT596 Off-the-Shelf Multi-Targeted CAR NK Cell Product Candidate
IND Application Cleared for Clinical Investigation by FDA

Fate Therapeutics Announces FDA Clearance of IND Application for FT596 Off-the-Shelf, iPSC-derived CAR NK Cell Cancer Immunotherapy

FT596 Product Candidate Derived from Clonal Master iPSC Line Engineered with Three Anti-Tumor Functional Components

Designed to Overcome CD19 Antigen Escape and Improve Durability of Response by Targeting Multiple Tumor-associated Antigens

Off-the-Shelf Availability of FT596 Enables Rapid Time-to-Patient Treatment and Broader Patient Access

San Diego, CA – September 3, 2019 – Fate Therapeutics, Inc. (NASDAQ: FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for cancer and immune disorders, announced today that the U.S. Food and Drug Administration (FDA) has cleared the Company’s investigational New Drug (IND) application for FT596, the Company’s first off-the-shelf chimeric antigen receptor (CAR) natural killer (NK) cell cancer immunotherapy which targets multiple tumor-associated antigens. FT596 is derived from a clonal master induced pluripotent

Clonal Master iPSC Line
Renewable source
One-time iPSC engineering
Scalable, cost-effective manufacture

Off-the-Shelf
Rapid time-to-patient treatment
Broader patient access
Multi-cycle availability

Best-in-Class Profile
3 anti-tumor modalities
Multi-antigen targeted
Overcome antigen escape
Improve durability of response
FT596 Off-the-Shelf Multi-Targeted CAR NK Cell Product Candidate
Potential Best-in-Class Cell-based Cancer Immunotherapy for B-cell Malignancies

First Cell Therapy Engineered with Three Active Anti-tumor Modalities Cleared for Clinical Investigation

- **hnCD16**: High-affinity 158V, non-cleavable CD16 Fc receptor that has been modified to augment antibody-dependent cellular cytotoxicity by preventing CD16 down-regulation and enhancing CD16 binding to tumor-targeting antibodies

- **CAR19**: Chimeric antigen receptor optimized for NK cell biology, which contains a NKG2D transmembrane domain, a 2B4 co-stimulatory domain and a CD3-zeta signaling domain, that targets B-cell antigen CD19

- **IL-15RF**: Interleukin-15 receptor fusion, a potent cytokine complex that promotes survival, proliferation and trans-activation of NK cells and CD8 T cells

FT596 clinical study for B-cell lymphoma and chronic lymphocytic leukemia:
- a) monotherapy and b) combination with CD20-targeted mAbs
FT596 Off-the-Shelf Multi-Targeted CAR NK Cell Product Candidate

Uniformly Engineered with Three Active Anti-Tumor Functional Components

3 Anti-Tumor Modalities: hnCD16 + CAR19 + IL15RF
FT596 Off-the-Shelf Multi-Targeted CAR NK Cell Product Candidate
Leveraging CAR + hnCD16 to Overcome Tumor Heterogeneity and Antigen Escape

Proprietary Approach to Target Multiple Tumor-Associated Antigens

Co-culture at 1:1 ratio

CD19+ targets

+ CD20-targeted mAb (rituximab)

CD20+ targets

Graphs showing the effect of FT596 compared to no effectors on the survival of CD19- targets, CD19+ targets, and the overall cell population over time.
FT596 vs. Primary CAR19 T Cells

In vitro test using low E:T ratio (0.3:1)

Determine response in presence of antigen availability

In vitro test using high E:T ratio (3:1)

Determine response in absence of antigen availability

FT596 Supported by Clinical POC with Donor-derived CAR19 NK Cells
M.D. Anderson Cancer Center, Katy Rezvani, M.D., Ph.D. (NCT03056339)

As reported at ASGCT 2019

*** FATE is not affiliated with product candidate or clinical study ***

- First-in-human clinical trial testing the safety and efficacy of donor-derived CAR NK cell therapy
 - Cord blood derived
 - Transduced with CAR19 (28z) / IL15 (secreted) / iCas9 (suicide)

- Treated 11 patients with r/r B-cell malignancies
 - r/r DLBCL (4); r/r CLL (5); r/r Follicular (2)
 - 3 dose levels (0.1M, 1.0M, 10M cells / kg)

- CR in 8/11 patients
 - CRs observed at all dose levels
 - CRs observed across all disease sub-types

- No CRS / neurotoxicity
CD16 mediates antibody-dependent cellular cytotoxicity (ADCC), a potent anti-tumor mechanism by which NK cells recognize, bind and kill antibody-coated cancer cells.

CD16 occurs in two variants: high (158V) or low (158F) affinity for the Fc domain of IgG1 antibodies.

- Only ~15% of patients are homozygous for 158V.
- Numerous clinical studies with FDA-approved tumor-targeting antibodies, including rituximab, trastuzumab and cetuximab, have demonstrated that patients homozygous for 158V have improved clinical outcomes.

CD16 has been shown to undergo considerable down-regulation in cancer patients and shedding in the tumor microenvironment, which can significantly limit endogenous NK cell activity and inhibit anti-tumor activity.

How to bring the 158V CD16 NK cell experience to all patients?
FT516 Off-the-Shelf hnCD16 NK Cell Product Candidate

High-Affinity 158V Binding to Monoclonal Antibody for Enhanced ADCC

Engineered Master iPSC Line

FT516

High-affinity, Non-Cleavable CD16

hnCD16

NK Cell

Modified form of CD16a

IgG antibody-binding receptor resists shedding upon activation

Enhanced Survival *In Vivo* with Rituximab

Mouse model of human lymphoma (Raji cells)

- **Untreated**
- **hnCD16-iNK +anti-CD20**
- **PB-NK+anti-CD20**
- **Anti-CD20**
- **Unmodified-iNK +anti-CD20**

Median survival time for FT516 + anti-CD20 was not reached at Day 100
FT516 Off-the-Shelf hnCD16 NK Cell Product Candidate

Phase 1 Study Design: Multiple Doses over Multiple Cycles for AML & Lymphoma

First-ever Clinical Trial in World of Engineered iPSC-derived Cell Therapy

Regimen A – Monotherapy
- Relapsed / refractory AML
- Dose Escalation: 90M, 300M, 900M cells per dose
- Dose Expansion: up to 15 subjects

Regimen B – Rituximab Combination
- Relapsed / refractory B-cell lymphoma
- Dose Escalation: 30M, 90M, 300M, 900M cells per dose + mAb
- Dose Expansion: up to 15 subjects

Cyclophosphamide: 500 mg/m² IV x 3 days
Fludarabine: 30 mg/m² IV x 3 days
IL-2: 6M units sc with each FT516 dose

Regimen B: Rituximab 375 mg/m² IV on Days -4, 4, 11, and 18 of each Treatment Cycle

IND Allowed, FT516 Manufacture Complete, Patient Screening Ongoing
FT516 Off-the-Shelf hnCD16 NK Cell Product Candidate

Supported by Clinical POC in Hematologic Malignancies and Solid Tumors

Donor NK Cell Therapy for AML

Phase 1 clinical trial in relapsed / refractory AML
- Cytokine-primed, donor-derived NK cell therapy
- Single-dose administration (0.5M, 1.0M, 10.0M per kg)
- 5 of 9 patients had clinical responses (4 CRs)
 - No DLTs / GvHD
 - Not correlated to KIR-ligand interactions

Monoclonal Antibody for Solid Tumors

Herceptin

Metastatic Breast Cancer

- NK Cells (V/V)
 - ~10-15% of Population
- NK Cells (F carrier)

Fehniger et al, Science Translational Medicine, 8, 357, 2016

FT500 Off-the-Shelf NK Cell Product Candidate

First-ever iPSC-derived Cell Therapy to Advance to Clinical Investigation in the U.S.

FT500 Product Candidate

- High levels of expression of potent activating receptors (NKG2D, NKp30/40/46)
- High levels of secretion of cytolytic proteins (perforin and granzyme B)
- Low levels of expression of checkpoint receptors (PD-1, LAG-3 and TIGIT)

FT500 cGMP Manufacture

- Homogeneous cell product
- Low-cost per dose cGMP production
- Cryopreserved with high post-thaw viability
- Administered off-the-shelf in outpatient setting

<table>
<thead>
<tr>
<th>FT500 Cell Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity, CD45+</td>
</tr>
<tr>
<td>Identity, CD45+CD56+</td>
</tr>
<tr>
<td>Viability</td>
</tr>
<tr>
<td>Residual iPSCs</td>
</tr>
<tr>
<td>Packaging</td>
</tr>
<tr>
<td>Availability</td>
</tr>
<tr>
<td>Administration</td>
</tr>
<tr>
<td>Delivery</td>
</tr>
</tbody>
</table>
Regimen A

- Multi-center, open-label Phase 1 study of FT500 as a monotherapy in advanced solid tumors
 - Salvage setting with patients having failed all FDA-approved therapies
 - Basket of tumor types; no enrichment based on tumor cell biology
- Designed to evaluate clinical safety and tolerability of novel dosing strategy
 - 3 doses per cycle over 2 cycles; 2 dose levels: 100M cells / dose and 300M cells / dose
- Assessing patient’s immunological response to FT500 dosing strategy
 - Endogenous immune cell response
 - Cytokine levels
 - Anti-cell immunogenicity
FT500 Off-the-Shelf NK Cell Product Candidate

Phase 1 Dose Escalation: Safety & Tolerability of Monotherapy in Advanced Solid Tumors

First-ever Clinical Trial in U.S. of iPSC-derived Cell Therapy

Regimen A

- DL1 – 100M cells per dose: Treated 3 patients
 - All 3 patients received 6 doses (e.g., 3 doses per cycle over 2 cycles)
 - No DLTs
 - No FT500-related SAEs

- DL2 – 300M cells per dose: Ongoing
 - No DLTs
 - No FT500-related SAEs

As of August 6 reporting date
FT500 Off-the-Shelf NK Cell Product Candidate

Phase 1 Dose Escalation: Safety & Tolerability in Combination with Checkpoint Inhibitor

First-ever Clinical Trial in U.S. of iPSC-derived Cell Therapy

- **Regimen B**
 - Multi-center, open-label Phase 1 study of FT500 in combination with checkpoint blockade therapy (CBT)
 - Salvage setting with patients having progressed or failed CBT
 - Tumor types where CBT is approved; no enrichment based on tumor cell biology
 - Designed to evaluate clinical safety and tolerability of **novel** dosing strategy in combination with CBT
 - 3 doses per cycle over 2 cycles; 2 dose levels: 100M cells / dose and 300M cells / dose
 - Assessing patient’s immunological response to FT500 dosing strategy
 - Endogenous immune cell response
 - Cytokine levels
 - Anti-cell immunogenicity
FT500 Off-the-Shelf NK Cell Product Candidate

Phase 1 Dose Escalation: Safety & Tolerability in Combination with Checkpoint Inhibitor

First-ever Clinical Trial in U.S. of iPSC-derived Cell Therapy

Regimen B

- DL1 – 100M cells per dose: Ongoing
 - No DLTs
 - No FT500-related SAEs
- DL2 – 300M cells per dose: Open
- Dose Expansion: Planned
 - Mandate pre- and post-treatment biopsy
 - Enrich for specific tumor types (e.g., down-regulation of MHC-I expression)

As of August 6 reporting date
FT500 Off-the-Shelf NK Cell Product Candidate

Phase 1 Dose Expansion Strategy: Enrich for Patients with Down-Regulation of MHC-I

✓ MHC Class I expression on tumor cells is required for detection and destruction by T cells

✓ Loss or down-regulation of MHC Class I is a major tumor escape mechanism in patients having progressed / failed checkpoint inhibitor therapy

✓ Several tumor cell mutations, including in B2M gene, disrupt MHC Class 1 expression

✓ B2M mutations are enriched in patients who are resistant to checkpoint blockage (~30%) and are associated with poor survival

NK cells have the unique ability to recognize and kill cancer cells that have down-regulated MHC Class I, a major tumor escape mechanism.
Off-the-Shelf CAR T-Cell Product Candidates
Memorial Sloan Kettering Collaboration

Dr. Michel Sadelain, MD, PhD
Director, Center for Cell Engineering
Memorial Sloan Kettering Cancer Center

"Engineering therapeutic attributes into pluripotent cell lines is a breakthrough approach to renewably generate potent T-cell immunotherapies. This unique approach offers the prospect for off-the-shelf delivery of T-cell therapies with enhanced safety and therapeutic potential at the scale necessary to serve significant numbers of patients."

Adapted from: Themeli, Riviere & Sadelain, Cell Stem Cells, 2015
FT819 TRAC-encoded CAR 1XX Expression

Engineering Primary T Cells vs. Single iPSC Clone for TCR Elimination

CRISPR Engineering: TCR Disruption + TRAC-encoded CAR Expression

- **Primary T Cell Batch**
 - 20% of T cells express allo-reactive TCR
 - Only 45% of T cells have TCR KO + CAR expression

- **Single iPSC Clone**
 - Complete elimination of TCR expression
 - Uniform and controlled CAR expression through TRAC
FT819 Off-the-Shelf CAR19 T-Cell Product

Novel CAR19 Targeted to the TRAC Locus for Improved Safety and Efficacy

- Novel CAR (MSKCC, 1XX) targeted to the TRAC locus for optimal activity
- Single cell derived, bi-allelic KO, iPSC clone for complete elimination of TCR mediated GvHD

FT819 vs. Primary CAR19 T Cells

Engineered CAR19 (1XX MSKCC) + TCR KO
Off-the-Shelf CAR T-Cell Franchise

Foundational IP – Recently Issued Composition of Matter Patents

- **U.S. Patent Number 10,287,606 entitled “Genomic Engineering of Pluripotent Cells”**
 - Issued May 2019 (FATE owned)
 - A cell or population thereof, wherein (i) the cell is an induced pluripotent stem cell (iPSC), a clonal iPSC, or an iPSC line cell; (ii) the cell comprises a polynucleotide encoding at least one chimeric antigen receptor (CAR) introduced into a T cell receptor (TCR) alpha locus; (iii) an endogenous TCR alpha gene is knocked out; and (iv) expression of the polynucleotide encoding at least one CAR is under control of an endogenous TCR promoter of the TCR alpha locus

- **U.S. Patent Number 10,370,452 entitled “Effective Generation of Tumor-targeted T cells derived from Pluripotent Stem Cells”**
 - Issued August 2019 (MSK owned; licensed exclusively to FATE for all human therapeutic uses)
 - A population of T cells that are produced by *in vitro* differentiation of a pluripotent stem cell, wherein (i) the pluripotent stem cell expresses a chimeric antigen receptor (CAR), and (ii) the population of T cells comprises a T cell exhibiting a CD45RA+ CD27- CD28- CCR7- CD62L- phenotype
ONO Pharmaceutical Collaboration

Off-the-Shelf iPSC-derived CAR T-Cell Product Candidates

<table>
<thead>
<tr>
<th></th>
<th>Product 1</th>
<th>Product 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor Type</td>
<td>Lymphoblastic leukemia</td>
<td>Solid tumor</td>
</tr>
<tr>
<td>Binding Domain</td>
<td>FATE to contribute</td>
<td>ONO to contribute</td>
</tr>
<tr>
<td>Preclinical Funding</td>
<td>Up to $70M, including $10M upfront plus $20M in committed research funding and up to an additional $40M in contingent fees</td>
<td></td>
</tr>
<tr>
<td>ONO Rights (subject to Preclinical Option Exercise)</td>
<td>Asia only</td>
<td>WW with FATE having opt-in right to develop and commercialize in the U.S. and Europe under a 50-50 profit-sharing arrangement</td>
</tr>
<tr>
<td>Post-Option Economics</td>
<td>Up to $285M in clinical development, regulatory and sales milestones plus royalties</td>
<td>Up to $895M in clinical development, regulatory and sales milestones plus royalties</td>
</tr>
</tbody>
</table>

ND = Not publicly disclosed
cGMP Manufacturing of iPSC-derived NK Cell and CAR T-cell Therapies
Launch of San Diego Facility Expected in September 2019

State-of-the-Art cGMP Facility Custom Designed for Concurrent Mass Production of Multiple iPSC-derived Cell Products

iSeed1
- Master iPSC line differentiation
- (30-day occupancy)

iSeed2
- Master iPSC line differentiation
- (30-day occupancy)

iFarm
- Capacity to parallel process up to 200L of cells during 30-day period

Estimated Production:
- ~600 doses per month
iPSC Product Platform

Clonal Master iPSC Lines for Off-the-Shelf Cell Products

- Single iPSC Clone
- Unlimited Supply of Clonal Master iPSC Lines
- Thousands of Clonally-derived Doses of Cell Products

(Engineered) Single Pluripotent Stem Cell
- Renewable
- Potential to differentiate into 200+ cell types

Expansion & Banking
- Master Cell Bank
 - Working Cell Banks

Differentiation & Expansion
- Off-the-Shelf Homogeneous | Multi-Dosing (Engineered) Cell Products
 - T Cell
 - NK Cell

“to reach more patients in need”
Financial Summary
As of June 30, 2019

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>$2.8M</td>
</tr>
<tr>
<td>Operating Expense, Adjusted (^1)</td>
<td>$22.5M</td>
</tr>
<tr>
<td>Cash & Cash Equivalents</td>
<td>$162.0M</td>
</tr>
<tr>
<td>Employees</td>
<td>146</td>
</tr>
<tr>
<td>Total Shares Outstanding (^2)</td>
<td>79.5M</td>
</tr>
</tbody>
</table>

\(^1\) Excludes non-cash stock-based compensation expense of approximately $4.4M.

\(^2\) Includes 14.1M shares of common stock from conversion of non-voting preferred stock.
Fate Therapeutics

Our First-in-Class Cellular Immunotherapy Pipeline

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Indication</th>
<th>R&D</th>
<th>Preclinical</th>
<th>Clinical</th>
<th>Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off-the-Shelf Cell Products derived from Clonal Master iPSC Line</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT500</td>
<td>iNK</td>
<td>+/- CPB in Solid Tumors</td>
<td></td>
<td></td>
<td></td>
<td>First Subjects Treated</td>
</tr>
<tr>
<td>FT516</td>
<td>hnCD16 iNK</td>
<td>+/- mAb in Hematologic Malignancies</td>
<td>IND Cleared by FDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT596</td>
<td>CAR19 + hnCD16 + IL15RF iNK</td>
<td>Hematologic Malignancies</td>
<td></td>
<td>IND Cleared by FDA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT538</td>
<td>hnCD16 + IL15RF + CD38KO iNK</td>
<td>+ anti-CD38 mAb in Multiple Myeloma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT576</td>
<td>CAR_BcMA + hnCD16 + IL15RF + CD38-KO iNK</td>
<td>Hematologic Malignancies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT819</td>
<td>TRAC-targeted CAR19 + TCR-KO iT</td>
<td>Hematologic Malignancies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT8xx</td>
<td>Engineered CAR iT</td>
<td>Hematologic Malignancies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT8xx</td>
<td>Engineered CAR iT</td>
<td>Solid Tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT301</td>
<td>Engineered immuno-suppressive cell</td>
<td>Not disclosed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Donor-derived Cell Products						
ProTmune	Allogeneic mPB cell graft	Hematologic Malignancies	RBC Phase 2			
NK100	Adaptive Memory NK	AML	Phase 1 Dose Escalation			
NK100	Adaptive Memory NK	Recurrent Ovarian	Phase 1 Dose Escalation			
NK100	Adaptive Memory NK	+/- mAb in Solid Tumors	Phase 1 Dose Escalation			

CPB = checkpoint blockade
mAb = monoclonal antibody