A Phase I Study of FT538, a First-of-Kind, Off-the-Shelf, Multiplexed Engineered, iPSC-Derived NK-Cell Therapy As Monotherapy in Relapsed/Refractory Acute Myelogenous Leukemia and in Combination with Daratumumab or Elotuzumab in Relapsed/Refractory Multiple Myeloma

Murali Janakiram, MD1, Ravi Vij, MBBS2, David S. Siegel, MD/PhD3, Ted Shih, PharmD4, Sara Weymer4, Bahram Valamehr, PhD4, Yu-Waye Chu, MD4, Jeffrey S. Miller, MD1

1Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 2Divisions of Hematology & Oncology, Washington University in St. Louis, St. Louis, MO, 3John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, 4Fate Therapeutics, Inc., San Diego, CA
Background and iPSC Product Platform

- Allogeneic natural killer (NK) cell therapies have been well tolerated, including absence of GvHD, cytokine release syndrome and neurotoxicity (Liu et al. 2020), with documented anti-tumor activity in patients with relapsed/refractory (r/r) acute myelogenous leukemia (AML) and multiple myeloma (MM) (Lupo et al. 2019).

- However, NK cells have limited in vivo expansion with a short half-life, and the potential for deeper and more durable anti-tumor response is limited, as with T-cell therapy, by manufacturing constraints and inability to administer more than a single dose of cellular therapy.

- The monoclonal antibodies (mAbs) daratumumab and elotuzumab are approved for the treatment of MM (Darzalex® USPI, Empliciti® USPI). Even though these antibodies have good clinical activity, eventually patients relapse with MM.

- Engagement of the Fc portion of the mAb with CD16 of NK cells promotes antibody-dependent cellular cytotoxicity (ADCC). But anti-CD38 mAbs such as daratumumab cause fratricide due to CD38 expression on endogenous NK cells (Casneuf et al. 2017).

- Hence, better clinical outcomes can be obtained by combining therapeutic mAbs with allogeneic NK cells designed to enhance ADCC, that are resistant to anti-CD38 mAb-mediated fratricide, and that can be consistently administered in multiple doses.

- A new, off-the-shelf, NK-cell platform utilizes a clonal, engineered, induced pluripotent stem cell (iPSC) line as starting material for the scaled production of NK cells through directed differentiation.

- This is unique because multiple cryopreserved doses consisting of uniformly engineered product can be generated for direct patient infusion in a cost-effective, off-the-shelf manner.
FT538, an iPSC-Derived, Multi-Engineered, NK-Cell Therapy

- FT538 is an investigational, multi-engineered, NK-cell therapy generated from a clonal master iPSC line that serves as a renewable source for the mass production of off-the-shelf NK cells.
- FT538 contains 3 engineered modalities for enhanced innate immunity:
 1. High-affinity 158V, non-cleavable CD16 Fc receptor for augmented ADCC
 2. Interleukin (IL)-15/IL-15 receptor fusion that promotes cytokine-autonomous persistence
 3. CD38 knockout to mitigate NK cell fratricide by CD38-directed mAbs
- An in vivo MM xenograft model demonstrated that the combination of FT538 + daratumumab led to enhanced ADCC and tumor control compared with daratumumab alone (Bjordahl et al. 2019).

- FT538 comprises a pure population of NK cells that are uniformly CD45+CD56+ and CD38-CD16+.
- FT538 is derived from a clonal iPSC master cell line, resulting in uniform CD38 knockout and hnCD16 expression on all cells.
FT538 Demonstrates Enhanced Long-Term Killing in the Presence of Daratumumab in a Serial Stimulation Cytotoxicity Assay Compared to Peripheral Blood NK cells

MM.1R Killing

Round 1

- FT538 maintains ADCC upon restimulation and outperforms peripheral blood NK cells.
- A combination of enhanced persistence due to IL-15RF and a lack of fratricide promotes enhanced, long-term ADCC when combined with daratumumab.

Collect all effector cells and transfer to new MM.1R target cells

Round 2

PB NK

FT538

PB NK + Dara

FT538 + Dara

Bjordahl et al. 2019 and Cichocki et al. 2019
FT538-101: Study Design

Study Treatment Schema: Regimen A: r/r AML

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Post-Tx Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT538</td>
<td>FT538</td>
</tr>
<tr>
<td>FT538</td>
<td>FT538</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditioning: Fludarabine (30 mg/m²), cyclophosphamide (500 mg/m²) x 3 days prior to FT538 infusion.

Study Treatment Schema: Regimens B+C: r/r MM

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Post-Tx Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT538</td>
<td>FT538</td>
</tr>
<tr>
<td>FT538</td>
<td>FT538</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditioning: Fludarabine (30 mg/m²), cyclophosphamide (500 mg/m²) x 3 days prior to FT538 infusion.

Subjects may be eligible for retreatment of additional cycle(s) of FT538 based upon:

- Not experiencing any dose-limiting toxicity (DLT) and adequate resolution of adverse events related to study treatment(s)
- Evidence of ongoing clinical benefit and absence of signs and symptoms of progressive disease and/or decline in ECOG Performance Status
- May also be eligible if achieved objective response to FT538 but subsequently progressed or relapsed without receiving intervening anti-cancer therapy

3 + 3 Dose Escalation and Expansion

- **Regimen A: r/r AML**
 - FT538 Monotherapy
 - Escalation (18^-1.5^9 cells)
 - Expansion (n=15)

- **Regimen B: r/r MM**
 - FT538 + Daratumumab
 - Escalation (18^-1.5^9 cells)
 - Expansion (n=15)

- **Regimen C: r/r MM**
 - FT538 + Elotuzumab
 - Escalation (18^-1.5^9 cells)
 - Expansion (n=15)
FT538-101: Patient Population

Key Inclusion

Regimen A

• Primary refractory AML
 • De novo AML: Complete response (CR) not achieved after ≥2 inductions (if >60 years old, ≥1 induction required)
 • Secondary AML: CR not achieved after ≥1 induction

• Relapsed AML
 • Relapse after ≥1 re-inductions (if >60 years old, prior re-induction not required)

Regimens B and C

• r/r MM
 • Regimen B: Relapse or progression after ≥2 lines of prior therapy, including proteasome inhibitor (PI) and immunomodulatory drug (IMiD)
 • Regimen C: Relapse or progression after PI, IMiD, and anti-CD38 therapy
 • Measurable disease

Key Exclusion

Regimen A

• r/r AML
 • Diagnosis of promyelocytic leukemia with t(15;17) translocation

Regimens B and C

• r/r MM
 • ANC <1000/µL (no growth factor support ≤7 days prior)
 • Platelet count <75,000/µL (no platelet transfusion ≤72 hours prior)
 • Plasma cell count >2000/mm³

All Regimens

• r/r AML and r/r MM
 • ECOG Performance Status ≥2
 • Inadequate organ function
 • Known CNS involvement
 • Prior allogeneic HSCT or allogeneic CAR T ≤6 months of first dose
FT538-101: Objectives and Endpoints

Objectives

Primary
• To determine the recommended Phase II dose (RP2D) for FT538 monotherapy in r/r AML
• To determine the RP2D for FT538 ± daratumumab or elotuzumab in r/r MM

Secondary
• Safety and tolerability of FT538 ± daratumumab or elotuzumab
• Anti-tumor activity of FT538 ± daratumumab or elotuzumab
• Pharmacokinetics (PK) of FT538 ± daratumumab or elotuzumab

Exploratory
• Association of PK/pharmacodynamics (PD) with safety and anti-tumor activity of FT538 ± daratumumab or elotuzumab
• Association of baseline clinical/tumor characteristics with safety and response endpoints following FT538 ± daratumumab or elotuzumab

Endpoints

Primary
• Incidence and nature of dose limiting toxicities (DLTs) to determine maximum tolerated dose or maximum administered dose
• RP2D based on overall safety and anti-tumor activity

Secondary
• Incidence, nature, and severity of adverse events
• Objective response rate by investigator per 2017 ELN criteria for r/r AML and per 2016 IMWG criteria for r/r MM
• Progression-free survival/event-free survival, relapse-free survival, overall survival, and/or duration of response by the investigator
• Determination of PK of FT538 in peripheral blood

Exploratory
• Detection of FT538 in bone marrow and/or tumor samples
• PD of FT538 as assessed by peripheral blood cytokines, immunophenotyping, and cellular function
• Assessment of tumor microenvironment in bone marrow and/or tumor samples pre- and post-treatment
• Proportion of subjects who achieve CR_{MRD}
FT538-101: Initial Site Activation (up to 8 planned)

- Projected enrollment: Up to 105 subjects
- ClinicalTrials.gov Identifier: NCT04614636