Novel Combination of iPSC-derived Dual-CAR NK Cells with CD16 Fc Receptor for Multi-antigen Targeting of Multiple Myeloma to Overcome Clonal Resistance and Antigen Escape

K. MATHAVAN¹, J. REISER¹, S. MAHMOOD¹, Y. PAN¹, M. JELCIC¹, B. HANCOCK¹, R. BLUM¹, W. YEH¹, A. HOUK¹, K. RESTREPO¹, T. DAILEY¹, C-W. CHANG¹, T. LEE¹, U. HOEPKEN², J. GOULDING¹, A. REHM², K. WUCHERPFENNIG³, J. GOODRIDGE¹, R. BJORDAHL¹, B. VALAMEHR¹. 1. Fate Therapeutics Inc., San Diego, CA

2. Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany

3. Harvard Medical School, Boston, MA, USA

Dual CAR Targeting

Resistance to targeted cell therapy can arise from antigen loss and clonal heterogeneity within the tumor. A dual CAR approach targeting two tumor associated antigens (TAA) was tested in primary CAR-T cells and iPSCderived NK cells to demonstrate an effective combination targeting B cell maturation antigen (BCMA) and major histocompatibility complex class I chain-related A/B (MICA/B) in multiple myeloma (MM).

BCMA CAR

BCMA is a highly expressed TAA in MM. To develop the BCMA CAR motif, we utilized our previously published high-affinity binding sequence that was shown to exhibit high selectivity of BCMA+ targets and enhanced recognition of low-BCMA expressing myeloma cells (Bluhm et al., Molec Ther 2018).

MICA CAR

MICA and MICB are pan-TAAs expressed on MM plasma cells. Our MICA/B CAR binding sequence targets the conserved α 3 domain of MICA/MICB, which we have previously shown to inhibit MICA/B shedding and drive anti-tumor immunity (Andrade et al., Science 2018).

Conclusions

- iPSCs were uniformly engineered with several anti-cancer modalities including non-cleavable CD16, an IL15 receptor fusion, CD38 knockout and two unique CARs, anti-BCMA and anti-MICA/B- α 3, for enhanced multi-antigen targeting and prevention of antigen escape.
- Co-expression of BCMA and MICA/B CARs in primary T cells enhanced avidity to target cells relative to single CAR controls, and enabled killing of MM target cells.
- Dual CAR-iNK cells:
- > exhibit anti-tumor responses in vitro against engineered and heterogenous MM lines
- \succ retain potency against multiple myeloma in the presence of soluble BCMA
- > display superior control of a heterogeneous, aggressive tumor model in vivo over single-antigen targeting
- These data highlight the applicability of a multi-targeted approach in MM patients, whereby dual CAR-iNK cells maintain responsiveness to malignant cells that shed or downregulate individual tumor antigens.

before being stained for caspase 3/7 and analyzed by flow cytometry.

dosed with the indicated iNKs without cytokine support. (B) Individual IVIS images. (C) Mean of total luminescence is shown over 16 days.